Investigadores del Centro de Domótica Integral (CeDInt) de la Universidad Politécnica de Madrid (UPM ) han desarrollado una solución de alto rendimiento computacional, que detecta el grado de estrés de un individuo en tiempo real. El sistema se basa en sensores fisiológicos que pueden ser fácilmente incorporados a la vestimenta del usuario, lo que permite realizar una monitorización continua del nivel de estrés de la persona.
www.agenciasinc.es ·
La Organización Mundial de la Salud prevé que para el año 2020 el estrés será el segundo factor causante de enfermedades en todo el mundo. Ya en 1983 fue portada de la revista Time bajo el título La epidemia de los ochenta, que lo consideró uno de los principales problemas de salud. Desde entonces, numerosos estudios confirman que el escenario ha empeorado de forma progresiva, situando el estrés como una enfermedad que el estilo de vida moderno promueve no sólo entre los adultos (principalmente como estrés laboral), sino también en niños, adolescentes o ancianos.
Una forma de afrontar la enfermedad es anticiparse. Detectar cuándo un anciano sufre una caída, si un conductor se queda dormido al volante, cuándo un trabajador se encuentra en situaciones cercanas a su límite o si un soldado necesita ayuda por ser incapaz de entrar en combate, son algunas de las situaciones que se podrán prevenir gracias a un nuevo sistema desarrollado por investigadores del grupo de Biometría, Bioseñales y Seguridad (GB2S) de la Universidad Politécnica de Madrid (UPM ).
El sistema permite monitorizar el grado de estrés de un individuo en tiempo real, cuantificándolo para que un supervisor o el propio individuo pueda detectarlo y llevar a cabo acciones para controlarlo. La solución la aporta un sistema hardware, encargado de capturar dos señales fisiológicas (tasa cardíaca y conductancia de la piel), y un software que analiza dichas señales en tiempo real, permitiendo de esta forma conocer el estado anímico del individuo.
El dispositivo refleja la reacción de una persona ante un estímulo externo, lo que nos permite conocer de inmediato si dicho estímulo le ha supuesto una alteración anímica (si le ha estresado). “El modelado del comportamiento de ambas señales fisiológicas en diferentes grados de estrés se realiza mediante el empleo de lógica difusa, lo que permite una adaptación máxima al sujeto”, indica Alberto de Santos, investigador del CeDInt. «El bajo coste computacional y los sensores fácilmente integrables y no invasivos incrementan la aceptación y usabilidad del sistema».
Los resultados obtenidos mediante este método a través de prototipos utilizados en entornos reales alcanzan tasas de acierto cercanas al 99%, lo que supone un 10% de mejora respecto a soluciones previas con únicamente dos señales fisiológicas de entrada. Sin embargo, la mayor ventaja de este sistema es que permite cuantificar el nivel del estrés para que la persona sea consciente de la evolución de su estado y pueda remediarlo.
CUATRO ESCENARIOS
El ámbito de aplicación del sistema es amplio, pero los investigadores se han centrado en cuatro escenarios:
Uno de ellos es la seguridad vial. En España, el 16% de los accidentes de tráfico se produce por quedarse dormido al volante, algo que ocasionó 238 víctimas en 2011 (según la Dirección General de Tráfico). Asimismo, el “exceso de estrés en la conducción puede provocar ausencia momentánea de atención, derivando en un incremento de la probabilidad de accidente”, subraya el investigador de la UPM Gonzalo Bailador.
La solución de estos investigadores puede detectar cuándo una persona está a punto de quedarse dormida al volante, o cuándo se encuentra altamente estresada, afectando a su estilo de conducción. El estrés puede llevar a una persona a conducir de forma más agresiva y, por tanto, peligrosa para la seguridad vial. En este caso, explican los investigadores, los sensores fisiológicos pueden incorporarse al volante y el sistema informaría al conductor de su grado de estrés mediante una pantalla en el salpicadero, que alertaría si se supera el límite aconsejable.
Otro de sus campos de aplicación es en el entrenamiento de fuerzas especiales, como ejército, policía o bomberos. Con ello, se podrá mejorar su comportamiento para que actúen de forma adecuada en situaciones en las que se vean expuestos a momentos realmente estresantes, así como maximizar la acción de los efectivos en combate
La monitorización de ancianos constituye otra área de interés. Las caídas y demás accidentes comunes son unas de las principales causas de muerte en personas de edad avanzada. Además, el fenómeno social del envejecimiento de la población, denominado metafóricamente Silver Tsunami, alerta sobre las dificultades que encontrarán los gobiernos actuales para hacer frente a la vigilancia preventiva de ancianos. Diversos estudios anuncian que en 2020 habrá un total de 10,1 millones de ancianos minusválidos, y que los costes directos e indirectos relacionados con caídas y accidentes de este sector de la población supondrán casi 55 mil millones de dólares anuales (según CVIDA).
En este caso, el sistema de los investigadores del CeDInt está orientado a personas mayores con movilidad reducida, víctimas de accidentes en sus domicilios y que no pueden avisar al servicio de atención. El sistema indicaría cuándo una persona está sufriendo una situación estresante, aunque el individuo no pueda comunicarlo.
Por último, otro de los sectores de aplicación es el de los videojuegos, “donde un sistema de detección de estrés permite al videojuego recibir un feedback instantáneo sobre los nervios que afectan al jugador”, explica Alberto de Santos. Esto desvelará sus puntos débiles y se aumentará la interactividad del videojuego.
No obstante, añaden los investigadores de la UPM, existen otros campos interesantes de aplicación, como la domótica (una casa que pueda adecuar la iluminación, música o temperatura al estado anímico del usuario).